
Flexible Hochbaum’s Normalized Cut
A graph-based learning method that relies on pairwise similarities and
its capability to handle label noise

Tor Nitayanont

UC Berkeley, IEOR department

January 2022

1 / 35

Outline

Learning methods that rely on pairwise similarities

Hochbaum’s Normalized Cut (HNC)

Flexible Hochbaum’s Normalized Cut (Flexible HNC)

Experiment

2 / 35

Learning methods that rely on pairwise similarities

• Several common machine learning methods are based on pairwise similarities (or
dissimilarities) between samples such as the k-nearest neighbor classifier or the
support vector machine.

• Hochbaum’s normalized cut or HNC is another learning method that builds a
prediction model based on similarities between samples.

• HNC is a graph-based approach where pairwise similarities are used as weights on
arcs that connect vertices, which represent samples. We will discuss this later.

3 / 35

Graph Cut

• Given a directed graph G = (V, A) with arc weights W = {wa for a ∈ A}
• A cut is a partition of vertices into two disjoint sets S and T such that S ∪ T = V and
S ∩ T = ∅.

• The capacity of the cut that partitions V into S and T is equal to
C(S, T) =

∑
i∈S,j∈T wij

• In theminimum cut problem, we seek for a cut with the smallest capacity.

• It has been used widely as a clustering method, mostly in image segmentation.

• Normalized cut is another well-known cut problem. It was proposed in [1].

4 / 35

Hochbaum’s Normalized Cut (HNC)

• Hochbaum’s normalized cut was introduced in [2] as an alternative to the
normalized cut problem, which is NP-hard.

• The goal of the HNC problem is to find a partition (S, T) that minimizes:

minimize
∅⊂S⊂V

C(S, T)∑
i∈S di

where di =
∑

j∈V wij

• Note that there could be two designated seed sets VS and VT where vertices in VS are
required to be in S and vertices in VT are required to not be in S (required to be in T).

• The problem of minimizing the ratio above is equivalent to finding the smallest
λ > 0 such that the optimal objective function of the following linearized problem
(HNC(λ)) is non-positive.

minimize
∅⊂S⊂V

C(S, T)− λ ·
∑
i∈S

di

5 / 35

HNC

• It has been shown that solving a minimum cut on the following graph gives the
solution to HNC(λ) [2], [3].

Figure 1: graph on which we solve the minimum cut

• di =
∑

j∈V wij

6 / 35

HNC

• In the context of (semi-)supervised learning, we consider a binary classification
problem where each sample belongs to either positive class or negative class.

• Given a set of labeled samples L = L+ ∪ L− where
– L+ is the set of samples with positive labels
– L− is the set of samples with negative labels

and the set of unlabeled samples U

• L+ is equivalent to the seed set VS. L− is equivalent to the seed set VT.

• Samples in the unlabeled set U are not constrained by the infinite arcs to be in
either the source set S or the sink set T.

• Weights w between pairs of samples represents their similarities. For instance, we

can use the Gaussian similarity weight wij = exp(− |xi−xj|2
2ϵ2) to represent the

similarity between sample i and sample j.

7 / 35

Flexible HNC

• We want our graph to take into account the possibility that some of the given labels
of the labeled samples might be inaccurate.

• The infinite weights on the arcs that connect s to the positive samples and connect
the negative labels to t are replaced with some finite weights. This is to allow the
labels of the labeled samples to change.

8 / 35

Flexible HNC

Figure 2: graph on which we solve the minimum cut to obtain the solution of Flexible HNC

• confs(l) is our ”confidence” about the positive label of l ∈ L+.

• conft(m) is our ”confidence” about the negative label ofm ∈ L−.

9 / 35

Confidence functions

In this work, we experiment with three confidence functions:

• constant confidence weight: confs(l) = θ and conft(m) = θ for s ∈ L+ and
m ∈ L−

• local mean-based confidence weight:
– For sample l with positive label, we find its k nearest positive neighbors L+k (l) and k

nearest negative neighbors L−k (l).
– We compute the distance from l to the average feature vectors of L+k (l) and L−k (l); denote

them by d+k (l) and d−k (l).

– confs(l) = θ ·
exp(−

d+k (l)
2

2ϵ2
)

exp(−
d+k (l)

2

2ϵ2
)+exp(−

d−k (l)
2

2ϵ2
)

and conft(m) = θ ·
exp(−

d−k (m)
2

2ϵ2
)

exp(−
d+k (m)

2

2ϵ2
)+exp(−

d−k (m)
2

2ϵ2
)

• k-nearest neighbor confidence weight
– confs(l) = θ · number of positive samples among k nearest neighbors

k
– conft(m) = θ · number of negative samples among k nearest neighbors

k

10 / 35

Graph sparsification

• In this work, we also apply a graph sparsification method to our HNC graph.
Instead of connecting each sample to all other samples, we only connect it to its k
nearest neighbors.

• This idea was first introduced in [4] but it has never been applied to HNC.

• There are also other sparsification methods such as the sparse computation
framework introduced in [5].

11 / 35

Experiment

We test HNC and Flexible HNC models along with three other similarity-based models

1. HNC on a fully connected graph (HNC)

2. HNC with kNN sparsification (HNC sp)

3. Flexible HNC with constant confidence weight (FHNC-const)

4. Flexible HNC with local mean confidence weight (FHNC-LM)

5. Flexible HNC with k-nearest neighbor confidence weight (FHNC-kNN)

6. k-nearest neighbor classifier (kNNC)

7. k-nearest neighbor classifier with repeated edited nearest neighbors method
(kNNC-RENN)

8. k-nearest neighbor classifier with AllkNN method (kNNC-AllkNN)

• Methods applied to kNN classifier in 7) and 8) attempt to detect noisy labels and
remove them before the classification step.

• Note that graph sparsification is also applied to 3), 4) and 5).

12 / 35

Experiment

Noise detection techniques that are applied to the k nearest neighbor classifier

• RENN: Repeated Edited Nearest Neighbors
– Each sample is flagged as noisy and is removed if the label of the majority of its k nearest

neighbors (use k = 5) is different from its labels.

• All kNN
– Similar to RENN, but after each iteration, the number of neighbors that we consider is

increased.
– The procedure is repeated until no noisy samples are detected.

Both techniques were proposed in [6] and have been used and referred to
consistently in numerous works related to noise detection such as in [7, 8, 9, 10].

13 / 35

Experiment Setup

• We test 8 models on 13 datasets. For each dataset, we test the models on 5
different train-test partitions.

• In each train-test split, 60% of the samples are labeled and 40% are unlabeled.

• We perform the experiments on two scenarios.
1. we make no changes to the given labeled samples
2. we flip 25% of the labels of the labeled samples

• Parameters are tuned using 10-fold shuffle split cross validation.

• Evaluation metrics:
1. accuracy of the label prediction
2. F1 score of the label prediction
3. noise recall: fraction of noisy labels that are detected
4. noise precision: fraction of detected samples that are actually noisy

• Note that metrics 3 and 4 are evaluated only in the second scenario where some
labels are flipped.

14 / 35

Parameters

1. λ: the parameter in HNC

2. θ: the weights of the confidence function on the arcs that connect the labeled
samples to the source/set node

3. k: the number of neighbors used in both the sparsification of HNC and the
prediciton of the k nearest neighbor classifier

4. ϵ: the parameter in the Gaussian similarity

HNC HNC sp FHNC-const FHNC-LM FHNC-kNN kNNC kNNC-RENN kNNC-AllkNN

λ ✓ ✓ ✓ ✓ ✓
θ ✓ ✓ ✓
k ✓ ✓ ✓ ✓ ✓ ✓ ✓
ϵ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

λ 2−8, 2−7, 2−6, ..., 2−1, 20

θ 2−3, 2−2, 2−1, ...22, 23

k 4, 8, 12, ..., 76, 80

ϵ 2−3, 2−2, 2−1, ...22, 23

15 / 35

Datasets

dataset # samples # features %positive labels

credit 1500 23 22.12%

credit 5000 23 22.12%

german 1000 24 30%

letter 1000 16 49.7%

letter 5000 16 49.7%

fourclass 862 2 35.61%

australian 690 14 44.49%

wdbc 569 30 37.26%

redwine 1599 11 96.06%

blood 748 4 23.8%

banknote 1372 4 44.46%

abalone 4177 10 49.82%

housing 506 13 26.09%

16 / 35

Results: Average accuracy
(without label noise)

17 / 35

Results: Accuracy ranking
(without label noise)

18 / 35

Results: Accuracy compared to HNC
(without label noise)

19 / 35

Results: Average F1 score
(without label noise)

20 / 35

Results: F1 score ranking
(without label noise)

21 / 35

Results: F1 score compared to HNC
(without label noise)

22 / 35

Results conclusion for the case where there is no
label noise

• Accuracy
– The kNN classifier without noise detection attains the highest accuracy (87.22%). The

accuracies of the flexible HNC models are quite close, especially the one with constant
confidence weight (87.01%).

– In terms of the average rank, the flexible HNC with constant confidence weight has the
best performance (2.96). The second and the third best are the kNN classfier (3.58) and
the flexible HNC with local mean confidence weight (3.73).

• F1-score
– All the HNC models, especially the flexible HNC (76.86%, 76.77%,76.20%), perform better

than kNN classifiers (74.49%).
– The flexible HNC models achieve higher F1 score than both the standard HNC (73.75%)

and the sparsified version of the standard HNC (76.09%).
– Constant confidence weights and local mean-based confidence weights give higher

F1-score than kNN confidence weights.

23 / 35

Results: Average accuracy
(with 25% label noise)

24 / 35

Results: Accuracy ranking
(with 25% label noise)

25 / 35

Results: Accuracy compared to HNC
(with 25% label noise)

26 / 35

Results: Noise detection - fraction of samples that are
flagged as noisy (with 25% label noise)

27 / 35

Results: Noise detection - Recall
(with 25% label noise)

Recall = the number of detected noisy labels / the number of all noisy labels

28 / 35

Results: Noise detection - Precision
(with 25% label noise)

Precision = the number of flagged samples that are actually noisy / the number of all
flagged samples

29 / 35

Results: Noise detection - F1 score (with 25% label
noise)

F1 score = the harmonic mean of recall and precision

30 / 35

Results conclusion for the case where 25% of the
labels of training samples are corrupted

• Accuracy
– All the flexible HNC models (83.82%, 83.51%, 83.31%) have higher accuracy than kNN

classifiers (83.10%).
– The sparsified HNC (83.34%), even without noise detection, also has higher accuracy then

kNN classifiers.
– The three flexible HNC models and the sparsified HNC are the four models with the best

ranking. The flexible HNC model with the constant confidence weight has the best rank.

• Noise detection
– The kNN classifier with RENN has the highest noise recall (i.e. the fraction of noisy labels

that are detected). This partly comes from the fact that kNN with RENN and AllkNN flag
the labels of so many samples as noisy.

– Regarding the noise precision (i.e. the fraction of noisy labels out of all samples that are
flagged as noisy), all the flexible HNC models have better performance.

– The flexible HNC models with confidence weights (70.31%, 71.41%, 72.19 %) have higher
F1 score of noise detection than the kNN classifiers (63.64%, 52.57%).

31 / 35

Future directions

• other confidence functions
– confidence function at each node could be dependent on (or scaled by) the weights of

other arcs that are adjacent to the node

• graph sparsification
– other existing sparsification methods such as sparse computation framework and regular

graph structure
– the sparsification (graph structure) among the nodes of labeled samples and the nodes of

unlabeled samples can be different

• more flexibility
– probabilistic labels rather than hard labels (binary labels)

• varying noise level
– vary the noise level that we add to the datasets
– corrupt the two classes with unequal noise levels

32 / 35

References I

Jianbo Shi and Jitendra Malik.
Normalized cuts and image segmentation.
IEEE Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

Dorit S Hochbaum.
Polynomial time algorithms for ratio regions and a variant of normalized cut.
IEEE transactions on pattern analysis and machine intelligence, 32(5):889–898, 2009.

Dorit S Hochbaum.
A polynomial time algorithm for rayleigh ratio on discrete variables: Replacing
spectral techniques for expander ratio, normalized cut, and cheeger constant.
Operations Research, 61(1):184–198, 2013.

Avrim Blum and Shuchi Chawla.
Learning from labeled and unlabeled data using graph mincuts.
2001.

33 / 35

References II

Dorit S Hochbaum and Philipp Baumann.
Sparse computation for large-scale data mining.
IEEE Transactions on Big Data, 2(2):151–174, 2016.

Ivan Tomek et al.
An experiment with the edited nearest-nieghbor rule.
1976.
Donghai Guan, Weiwei Yuan, Young-Koo Lee, and Sungyoung Lee.
Nearest neighbor editing aided by unlabeled data.
Information Sciences, 179(13):2273–2282, 2009.

Michael R Smith and Tony Martinez.
Improving classification accuracy by identifying and removing instances that
should be misclassified.
In The 2011 International Joint Conference on Neural Networks, pages 2690–2697.
IEEE, 2011.

34 / 35

References III

Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera.
Prototype selection for nearest neighbor classification: Taxonomy and empirical
study.
IEEE transactions on pattern analysis and machine intelligence, 34(3):417–435, 2012.

Nordiana Mukahar and Bakhtiar Affendi Rosdi.
Performance comparison of prototype selection based on edition search for
nearest neighbor classification.
In Proceedings of the 2018 7th International Conference on Software and Computer
Applications, pages 143–146, 2018.

35 / 35

	Learning methods that rely on pairwise similarities
	Hochbaum's Normalized Cut (HNC)
	Flexible Hochbaum's Normalized Cut (Flexible HNC)
	Experiment

