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| will often say MAPF instead of multi-agent path finding.

Multi-Agent Path Finding (MAPF)

 Optimization problem with the objective to minimize task-completion
time (called makespan) or the sum of travel times (called flowtime)

Assumptions
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vlte(fbl Multi-Agent Path Finding (MAPF)
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» A*-based search in the joint state space

not our work
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[1] T. Standley, “Finding Optimal Solutions to Cooperative Pathfinding Problems”, AAAI, 2010.

* Runtime limit: 1 minute
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Automated Warehousing

not our work

* Amazon fulfillment centers
— 2003 Kiva Systems founded
— 2012 Amazon acquires Kiva Systems for $775 million

— 2015 Kiva Systems becomes Amazon Robotics

2ot o T

Left photo: https://olhardigital.com.br/en/2019/11/25/cars-and-technology/amazor ts-t ke-any-delivery-in-just-30-minutes/ https://www.youtube.com/watch?v=YSrnVOwzZywU
Right photo: https://www.dailymail.co.uk/sciencetech/article-3229192/Would-orders-robot-Hitachi-hires-machine-manager-warehouse-workers.html
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Issues in Automated Warehousing

» We are only starting to study automated warehousing

— When should one start to process a given order given that different orders
have different delivery deadlines?

— Where should one place a given shelf to maximize throughput, so that
shelves that contain frequently ordered items can be fetched fast?

— Which one of several possible shelves should one fetch to obtain an item for
a given order?

— Where should one place the corridors to maximize throughput? And how can
one change the layout of a warehouse during operation?

— How should one move the robots to avoid them obstructing each other and allow
them to reach their goal locations quickly?

18
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Automated Warehousing

not our work

* Amazon fulfillment centers — warehousing part
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https://www.machinedesign.com/mechanical-motion-systems/article/21835788/changing-the-future-of-warehouses-with-amazon-robots

[1] P. Wurman et al., “Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses”, Al Magazine 29(1), 9-20, 200§
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not our work

https://www.wired.com/story/amazon-warehouse-robots/
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https://www.inviarobotics.com/app/uploads/2020/02/DASRS-11_0.jpg

not our work
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Automated Warehousing
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Automated Warehousing

not our work

* Vanderlande ADAPTO

https://www.directindustry.com/prod/vanderlande/product-5796-1580097.html

Shuttles sort directly to destination
Shuttles sort directly to destination

https://www.youtube.com/watch?v=Szt20xNxB5M
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not our work

https://www.br-automation.com/en/products/mechatronic-systems/acopos-6d/
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\?E%rbl Multi-Agent Path Finding (MAPF)

f Engincering

* Assumptions

— Each agent moves N, E, S or W to an adjacent unblocked cell or waits, in unit time
— Not allowed (“vertex collision”) ,
o Agent 1 moves from XtoY —
o Agent 2 moves fromZto Y €9
— Not allowed (“edge collision”) X
o Agent 1 moves from XtoY
o Agent 2 moves from Y to X "

— Allowed

Y Z

(3E)
¢o o-

[1] R. Stern et al., “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks”, SoCS, 2019.
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Ve Multi-Agent Path Finding (MAPF)

sof of Engincering

» 800 robots (= 32% empty cells) on a 37x77 sorting-center map with
50 workstations and 275 chutes (joint project with Amazon Robotics)

s e e L

b B 9. 5 A < Sa R

it -} .,,.':‘ SEi
Single-Agent Planner Our MAPF Planner

[1] ). Li et al., “Lifelong Multi-Agent Path Finding in Large-Scale Warehouses”, AAAI, 2021.
31

https://www.wired.com/story/amazon-warehouse-robots
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gl%gbl Multi-Agent Path Finding (MAPF)

* 800 robots (= 32% empty cells) on a 37x77 sorting-center map with
50 workstations and 275 chutes (joint project with Amazon Robotics)

151

The Machine

Making sense of Al

Amazon’s Al tool can plan

collision-free paths for 1,000
warehouse robots

101 MAPF Planner

y-—- Single-Agent Planner

In a recent technical paper, researchers affiliated with the

delivered packages / timestep

51 ol g / o University of Southern California and Amazon Robotics
/ Amazon| explored a solution to the problem of lifelong multi-agent
_// [Due to traffic congesti@ needs | path finding (MAPF), where a team of agents must be moved
3 to be herg
0 : . https://venturebeat.com/2020/05/18/amazons-ai-tool-can-plan-collision-free-paths-for-1000-warehouse-

0 200 400 600 800 1000
Number of robots

[1] ). Li et al., “Lifelong Multi-Agent Path Finding in Large-Scale Warehouses”, AAAI, 2021.
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Main Talk

Achieving Practicality:
Efficiency
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Multi-Agent Path Finding (MAPF)

Optimal MAPF planners

(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded-suboptimal MAPF planners

(based on optimal MAPF planners)

Efficiency

Effectiveness

Suboptimal MAPF planners

(greedy or based on traffic rules)

34

Complexity of MAPF

» Optimal or bounded-suboptimal MAPF planning

— NP hard to find a makespan- or flow-time optimal MAPF
plan [1], even on planar [2] or grid-like graphs [3]

— NP-hard to find a makespan-bounded-suboptimal MAPF
plan with suboptimality factors of less than 4/3 [5]

https://www.pngegg.com/en/png-horua

[1] J. Yu and S. LaValle, “Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs”, AAAI, 2013.
[2] J. Yu, “Intractability of Optimal Multi-Robot Path Planning on Planar Graphs”, IEEE Robotics and Automation Letters, 2016.
[3] J. Banfi et al., “Intractability of Time-Optimal Multi-Robot Path Planning on 2D Grid Graphs with Holes”, IEEE Robotics and Auto

[4] J. Yu and S. LaValle, “Multi-Agent Path Planning and Network Flow”, WAFR, 2012.
[5] H. Ma et al., “Multi-Agent Path Finding with Payload Transfers and the Package-Exchange Robot-Routing Problem”, AAAI, 2016.
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Multi-Agent Path Finding (MAPF)

Optimal MAPF planners

(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded-suboptimal MAPF planners

(based on optimal MAPF planners)

Efficiency

Effectiveness

Suboptimal MAPF planners

(greedy or based on traffic rules)

The memory consumption is also important and can be decreased with

[1] E. Boyarski et al., “Iterative-Deepening Conflict-Based Search”, IJCAI 2020.

iterative deepening, which enables the application of incremental search

42

« Conflict-based search (CBS) in the collision-resolution space
A B C

D

not our work

E

1 52

2|51

G1
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[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding”, Artificial Intelligence 219, 2015.
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not our work

« Conflict-based search (CBS) in the collision-resolution space
A B C D E
1 S2

Add constraint: 4 G2

the blue agent is not allowed
to be in cell D3 at time 4

Add constraint:
the red agent is not allowed
to be in cell D3 at time 4

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding,” Artificial Intelligence 219, 2015.
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not our work

« Conflict-based search (CBS) in the collision-resolution space
A B C D E
1 S2

G2

Add constraint: 4
the blue agent is not allowed
to be in cell D3 at time 4

Add constraint:
the red agent is not allowed
to be in cell D3 at time 4

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding,” Artificial Intelligence 219, 2015.
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« Conflict-based search (CBS) in the collision-resolution space

not our work

A B C D E
1 S2
2|51
3 G1
Add constraint: Add constraint: 4 G2

the blue agent is not allowed
to be in cell D3 at time 4

the red agent is not allowed
to be in cell D3 at time 4

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding,” Artificial Intelligence 219, 2015.
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% USC

Viebi  Multi-Agent Path Finding (MAPF)

Seh

* Runtime limit: 1 minute
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[1] E. Boyarski et al., “ICBS: Improved Conflict-Based Search Algorithm for Multi-Agent Pathfinding”, 1JCAI, 2015.
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 Conflict-based search (CBS) in the collision-resolution space
A B C D E

1 S2

Add constraint: 4 G2
the blue agent is not allowed
to be in cell D3 at time 4

Add constraint:
the red agent is not allowed
to be in cell D3 at time 4

[1] J. Li et al., “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding”, AAAI, 2019.
[2] J. Li et al., “New Techniques for Pairwise Symmetry Breaking in Multi-Agent Path Finding”, ICAPS, 2020.
[3] J. Li et al., “Pairwise Symmetry Reasoning for Multi-Agent Path Finding Search”, Artificial Intelligence, 2021.
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.

kgwwerbl CBS Improvement 3: Symmetry Breaking crsvr

Schootof gramming

* Conflict-based search (CBS) in the collision-resolution space
A B C D E

1 s2
2| s1
3 Gl
4 G2
| - S 6 7 8 9
| I 1 3 4 D 6 i 8
2 3 @ 14 26 46 79 133 221
3 22 33 116 239 472 904 1,692
- 142 392 1016 2,651 6.828 17.747
5 1,015 2971 8,525 23,733 65.236
6 7447 24,275 78,002 254,173
7 62,429 222524 795,197
8 573,004  >1518.151

[1] J. Li et al., “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding”, AAAI, 2019.
[2] ). Liet al., “New Techniques for Pairwise Symmetry Breaking in Multi-Agent Path Finding”, ICAPS, 2020.
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 Conflict-based search (CBS) in the collision-resolution space

A B C D E
1 S2
2(s1
Add constraint: Add constraint: 3 G1
the red agent is not allowed the blue agent is not allowed
to be in cell D3 at time 4 to be in cell D3 at time 4 4 G2

in cell C3 at time 3
or in cell B2 at time 2

orin cell D2 at time 3

[1] J. Li et al., “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding”, AAAI, 2019.
[2] ). Li et al., “New Techniques for Pairwise Symmetry Breaking in Multi-Agent Path Finding”, ICAPS, 2020.
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Schoo! of Engineering

inspiration from
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Wterbl CBS Improvement 3: Symmetry Breaking crsvr

* Number of node expansions
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[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.
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» Mutex propagation

timestep O - - 1 S2
2|S1
timestep 1 A3 3 G1
4 G2
timestep 2 B3
timestep 3 I C3 I I I I I I
timestep 4 I D3 I I I I

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.
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inspiration from

Viebi CBS Improvement 3: Symmetry Breaking sy

School of Engineering planning

» Mutex propagation

timestep O 1 S2

S1

N

timestep 1 A3 B2 4 B2 3 G1

e— |
PR

timestep 3

ey
> / . 4 G2
timestep 2 B3 c2 B3

I D2 Cc3

1
1 1
timestep 4 D3 D3

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

b Lh L
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gerbl CBS Improvement 3: Symmetry Breaking smeic

¢ Engincering planning

» Mutex propagation

timestep O - - 1 S2
S1
timestep 1 A3 3 G1

S ,-L- B/ s_,ﬁ ILI : g
[Lin|a)n

N

=)

timestep 3

}Elf_lf

timestep 4 D3

timestep 5

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.
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|nsp|rat|on from

mCBS Improvement 3: Symmetry Breaking smeic

planning

» Mutex propagation

timestep O - 1 52
2(S1
timestep 1 A3 B2 3 G1
1 ) 4 G2
timestep 2 I_B{dl I

timestep 3

timestep 4

timestep 5

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.
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planning

* Mutex propagation

1 S2
2(s1
Add constraint: Add constraint: 3 G1
the red agent is not allowed the blue agent is not allowed
to be in cell D3 at time 4 to be in cell D3 at time 4 4 G2

orin cell C3 at time 3
orin cell B2 at time 2

orin cell D2 at time 3

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.
65

j_gterbl Summary: Conflict-Based Search (CBS)

* Resolving collisions efficiently
— Symmetry breaking with designed or discovered constraints (optimal)
— Disjoint splitting (optimal)
— Priority-based search (suboptimal)
* Selecting nodes cleverly
— Heuristics (optimal)
— Explicit Estimation Search (bounded-suboptimal)
* Reducing the number of collisions in a node
— Highways (bounded-suboptimal)
— Rolling-horizon collision resolution (suboptimal)
* Other techniques

— Random restarts
— Large neighborhood search with designed or learned neighborhoods 5

66
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[1]J. Li et al., “Pairwise Symmetry Reasoning for Multi-Agent Path Finding Search”, Artificial Intelligence, 2021.
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Multi-Agent Path Finding (MAPF)

Efficiency

Optimal MAPF planners

(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded-suboptimal MAPF planners
(based on optimal MAPF planners)

Suboptimal MAPF planners

(greedy or based on traffic rules)

Effectiveness

70
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* Not included: directional lanes to avoid head-to-head collisions
* Not included: rapid random restarts

74

Multi-Agent Path Finding (MAPF)

Optimal MAPF planners

(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded suboptimal MAPF planners

(based on optimal MAPF planners)

Efficiency

Effectiveness

Suboptimal MAPF planners

(greedy or based on traffic rules)

88
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Our Best CBS

QT (optimal

10° 0 60 10
Number of agents (log scale)

* Priority-based search
» Large neighborhood search

* Not included: rolling-horizon collision resolution
[1]J. Li et al., “RMAPF: Fast Repairing for Multi-Agent Path Finding via Large Neighborhood Search”, under review for AAAI, 2022.

89

Algorithm Selection

« Jingyao Ren and Nora Ayanian (USC)
* Roni Stern et al. (Ben-Gurion University)

90

90
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Algorithm Selection

not our work

Fastest Coverage —ICTS —EPEA* —LazyCBS —SAT —CBSH

Model All Even Rand. All Even Rand.
EPEA* 9.63 8.49 10.66|55.26 55.13 55.57 city city
ICTS 423 273 521(49.60 48.99 50.32 AN
CBS-H 46.95 45.02 48.75|83.20 66.01 98.49  warehouse game e 72\ S game
MDD-SAT 2.11 248 1.72(57.92 57.48 5854 Iy o / N\
Lazy CBS 37.26 41.28 33.66|92.36 91.45 93.17 / Q;\ [ ) \

{ N [ \
Best-at-grid(C) 49.45 4998 48.47|97.62 97.43 98.55 room: 4~ /ey TOOMAY 7 '/ empty
Best-at-grid(F) 60.09 61.77 60.29 |92.46 91.53 97.80 \ 7 /4
Best-at-grid-type(C) | 51.18 40.88 48.71[93.95 91.64 98.51 dom———
Best-at-grid-type(F) | 57.47 58.00 58.11|92.57 89.81 98.48 random maze randem maze

Fastest Coverage

91

[1] O. Kaduri et al., “Experimental Evaluation of Classical Multi Agent Path Finding Algorithms”, SoCS, 2021.

91

Algorithm Selection

not our work
Inception Module B

Inception
([ Max Pool ]
BatchNorm
Inception
Max Pool
BatchNorm

(BatchNorm ]

Inception
Max Pool

128x35x35
128x11x11

128x106x106

Algorithm Accuracy Coverage Runtime TR0 00
CBS 0.1888 0.41 7,714
CBSH 0.2810 0.90 2,211
BCP 0.5294 0.91 2.256 e Accuracy is the proportion of instances in which an algo-
SAT 0.0008 0.38 8.548 rithm is the fastest in the portfolio.

o Coverage is the proportion of the instances that an algorithm
éSIEIZTSt el gg’ﬁ; ggg 1223 successfully solves within the time limit (5 minutes).
Gav = 05140 0,68 1’5 i3 e Runtime is the overall time taken by the algorithm, in min-
MAPFAST 0.7689 0.97 1:339 utes, to solve all instances. A default value of 5 minutes is

added to the runtime when the algorithm doesn’t solve the

Oracle 1.0 1.0 917

input instance within time limit.

[1] J. Ren et al., “MAPFAST: A Deep Algorithm Selector for Multi Agent Path Finding”, AAMAS, 2021. .

92
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Main Talk

Achieving Practicality:
Robustness

102

CBS Extensions

* Agents of different kinodynamics
» Uncertainty about the speeds of agents

103
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Non-Holonomic Robots

School of Engineering

* Application: loading docks

r

www.easternlifttruck.com courtesy of Marcello Cirillo

Linde CiTi Truck at Orebro University
[1] M. Cirillo et al., “Integrated Motion Planning and Coordination for Industrial Vehicles”, ICAPS 2014.

105

=% USC

‘ ) Viterbi

School of Engineering

Non-Holonomic Robots

[1] L. Cohen et al., “Optimal and Bounded-Suboptimal Multi-Agent Motion Planning”. SOCS 2019.

[2] M. Pivtoraiko et al., “Differentially Constrained Mobile Robot Motion Planning in State Lattices”, Journal of Field Robotics 26(3),

106
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Schisol of Engineering

Non-Holonomic Robots

Grid

Discretized space (x,y)

Planar graph

Uniform edge traversal times
Discretized time

State Lattice

N
(=
-
Discretized space (x,y,orientation)
Nonplanar graph
Non-uniform edge traversal times
Continuous time

[1] L. Cohen et al., “Optimal and Bounded-Suboptimal Multi-Agent Motion Planning”. SOCS 2019.

[2] M. Pivtoraiko et al., “Differentially Constrained Mobile Robot Motion Planning in State Lattices”, Journal of Field Robotics 26(3),

107

Non-Holonomic Robots

[1] L. Cohen et al., “Optimal and Bounded-Suboptimal Multi-Agent Motion Planning”. SOCS 2019.
[2] M. Pivtoraiko et al., “Differentially Constrained Mobile Robot Motion Planning in State Lattices”, Journal of Field Robotics 26(3),

108
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Robust Plan Execution

* Mixed reality simulation

[1] W. Hoenig et al., “Mixed Reality for Robots”, IROS, 2015.

not our work

132

Main Talk

A Challenge for the Audience

133
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not our work

* PRIMAL: mix of deep reinforcement learning and imitation learning

https://medium.com/free-code-camp/explained-simply-how-deepmind-taught-ai-to-play-video-games-9eb5f38c89ee https://www.pcworld.com/article/2889432/google-ai-program-masters-classic-atari-video-games.html

[1] V. Mnih et al., “Human Level Control through Deep Reinforcement Learning”, Nature 518, 2015.

135

Machine Learning

* PRIMAL: mix of deep reinforcement learning and imitation learning

‘ one agent (replicated for each agent)

! !

10x10x4 2x1

\

12x1

RelLU

Input Tensors  Goal Position——> Fully connected — | ReLU “S1axl
i | K LSTM 1x1{Sigmoid
10x10x128 5x5x128 2x2x256 Fully connected b ladkis
Conv2D Conv2D —>» MaxPool T
ReLU 12x1 512x1

v10x10x128 A5x5x256 512x1 512x1 § X1y
Conv2D Conv2D Fully connected Fully connected | | Fully connected J

l10x10x128 5x5x128 T5x5x256 00x1 v S12x1 S‘)f‘maxl 5x1 l 1x1
Cony2D ——> MaxPool —> Conv2D Conv2D —> Concatenate Policy Value

Fully connected

N

Next action to execute

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

136
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Machine Learning

* PRIMAL: mix of deep reinforcement learning and imitation learning

World stat v’
orld state ) " ”

Ivl
Magnitude

e

Unit vector

Obstacles Agents' Neighbors' Agent's
positions goals goal

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

137

Machine Learning

* Training: 20 days in a supercomputing center
* 64 agents — 20x20 environment — 10% obstacle density

MAPF planner PRIMAL (learning)

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

138
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4 USC ) )
) Viterbi Machine Learning

School of Engineering

* Training: 20 days in a supercomputing center
* 64 agents — 20x20 environment — 20% obstacle density

me m

)

L
MAPF planner PRIMAL (learning)

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

139

Machine Learning s ceocre v (DB BNy

MAPF planner

[1] ). Li et al., “Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge,” ICAPS, 2021.

140
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School of Engincering

Machine Learning s ceocre v (DB BNy

* NeurlPS 2020 Flatland Competition: 700 participants from 51 countries

u:

Planning Phase

mprove.
'
®

Parallel Computing

Simulated
Annealing

Planning

Initial MAPF plan
Rail network and

Large Neighborhood start angl target
Search (LNS) stations of| each train

____________________________________________ patiand//, J -
Simulator
Location and
MAPF plan Better MAPF plan b
Minimum
Lazy Planning

Hyperparameters

of each train

Move command
for each train

trains Communication

Planning Time

[1] J. Li et al., “Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge,” ICAPS, 2021.
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Machine Learning s ceocre v (DB BNy

School of Engincering

* NeurlPS 2020 Flatland Competition: 700 participants from 51 countries
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o4 [/;@ 261339 0.944 | orR | 68 fori J/ LY view ) ( code
{ A Sun, 1 Nov 2020 [P !
LA g
* @8 253807 0016 | OR | 57 20 VWA M ] (view  (code
s von, 28502020 f1\ |
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TrackTricks , 1
o B 236173 osat | m |10 TPENOZ20 4 g N fAJ W View ) cade
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zass0 ozss | m | 76 220 N view | ( cade

[1] J. Li et al., “Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge,” ICAPS, 2021.
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inspiration from

MaChine Learning mixed integer

programming

» Enhancing planning with machine learning
— Planners use lots of hard-coded decision strategies
— Machine learning can often learn to make better decisions
— The resulting planners can be more efficient and/or effective

Warehouse Room i City

Gam
100 100 1 ame
—=— CBSH2 —=— CBSH2 —— CBSH2 —=— CBSH2
ML-S ML-S ML-S ML-S
80 —— ML-O 80 — ML-O 80 —— ML-O 80 — ML-O
X X X X
Q |3 Q O
% 60 % 60 'ﬁ 60 ‘Ex’ 60
(-4 o [-4 -4
@ @ @ @
U 40 40 40 o 40
S S S S
o S S I+ :
> =3 3 > &
wn wn 2] 1%
| ) | )
30 35 40 45 50 5! 20 22 24 26 28 30 32 34 180 200 220 240 260 280 a 95 100 105 110 115 120 125 130
Number of Agents Number of Agents Number of Agents Number of Agents

[1] T. Huang et al., “Learning to Resolve Conflicts for Multi-Agent Path Finding with Conflict-Based Search,” AAAI, 2021.

[2] T. Huang et al., “Learning Node-Selection Strategies in Bounded-Suboptimal Conflict-Based Search for Multi-Agent Path Finding
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[1] N. Petersen et al., “Termes: An Autonomous Robotic System for Three-Dimensional Collective Construction”, RSS, 2011
[2] S. Kumar et al., “A Tree-Based Algorithm for Construction Robots”, ICAPS, 2014.
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[1] J. Chen et al., “Cooperative Task and Motion Planning for Multi-Arm Assembly Systems”, under review for IEEE Robotics g
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[1] J. Li et al., “Scheduling and Airport Taxiway Path Planning under Uncertainty”, AIAA, 2019.
[2] R. Morris et al., “Planning, Scheduling and Monitoring for Airport Surface Operations”, AAAI-16 Workshop, 2016.
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[1] G. Belov et al., “From Multi-Agent Pathfinding to 3D Pipe Routing”, SoCS, 2020.
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Multi-Agent Path Finding (MAPF)

* H. Andreasson, D. Atzmon, N. Ayanian, R. Bartak, G. Belov, E. Boyarski, V. Bulitko, T. Cai, D. Chan, S.-
H. Chan, Z. Chen, H. Choset, M. Cirillo, L. Cohen, B. Dilkina, W. Du, J. Durham, A. Felner, G. Gange,
M. Garcia de la Banda, M. Gong, M. Greco, D. Harabor, C. Hernandez, W. Hoenig, T. Huang, S. Jung,
J. Kerr, S. Kiesel, S. Kumar, E. Lam, P. Le Bodic, J. Li, Z. Liang, M. Liu, W. Liu, Z. Liu, H. Ma, R. Morris,
W. Paivine, C. Pasareanu, F. Pecora, W. Ruml, G. Sartoretti, G. Sharon, Y. Shi, D. Sigurdson, R. Stern,
P. Stuckey, N. Sturtevant, K. Sun, P. Surynek, L. Terr, A. Tinka, Z. Tong, C. Tovey, T. Uras, G. Wagner, T.
Walker, J. Wang, X. Wei, Y. Wu, H. Xu, M. Yao, W. Yeoh, L. Yi, D. Zhang, H. Zhang, Y. Zheng

* We thank NSF, Amazon Robotics, and NASA Ames for funding several of our projects discussed in
this talk!
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Multi-Agent Path Finding (MAPF) is the problem of computing collision-free paths for a team of agents from their current
locations to given destinations. Application examples include autonomous aircraft towing vehicles, automated warehouse systems,

Class Projects office robots, and game characters in video games. Practical systems must find high-quality collision-free paths for such agents quickly.

Consider, for example, automated warehouses. Path planning for robots in such warehouses is tricky since most warehouse space is used
for storage, resulting in narrow corridors where robots cannot pass each other. Warehouse robots operate all day long but a simplified

one-shot version of the path-planning problem is the simplest form of a MAPF problem, which can be described as follows: On math paper,
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