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I will often say MAPF instead of multi-agent path finding.

Multi-Agent Path Finding 
and Its Applications

Multi-Agent Path Finding (MAPF)

• Optimization problem with the objective to minimize task-completion 
time (called makespan) or the sum of travel times (called flowtime)

Assumptions
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Multi-Agent Path Finding (MAPF)

• A*-based search in the joint state space

A2
B1

…A2
B1

A2
C1

A3
B2

[1] T. Standley, “Finding Optimal Solutions to Cooperative Pathfinding Problems”, AAAI, 2010.

not our work

Multi-Agent Path Finding (MAPF)

• Runtime limit: 1 minute

[6]
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Automated Warehousing

• Amazon fulfillment centers
– 2003 Kiva Systems founded
– 2012 Amazon acquires Kiva Systems for $775 million
– 2015 Kiva Systems becomes Amazon Robotics

Left photo: https://olhardigital.com.br/en/2019/11/25/cars-and-technology/amazon-wants-to-make-any-delivery-in-just-30-minutes/
Right photo: https://www.dailymail.co.uk/sciencetech/article-3229192/Would-orders-robot-Hitachi-hires-machine-manager-warehouse-workers.html

not our work

https://www.youtube.com/watch?v=YSrnV0wZywU

Issues in Automated Warehousing

• We are only starting to study automated warehousing
– When should one start to process a given order given that different orders 

have different delivery deadlines?
– Where should one place a given shelf to maximize throughput, so that 

shelves that contain frequently ordered items can be fetched fast?
– Which one of several possible shelves should one fetch to obtain an item for 

a given order?
– Where should one place the corridors to maximize throughput? And how can 

one change the layout of a warehouse during operation?
– How should one move the robots to avoid them obstructing each other and allow 

them to reach their goal locations quickly?
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Automated Warehousing

• Amazon fulfillment centers – warehousing part

[1] P. Wurman et al., “Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses”, AI Magazine 29(1), 9-20, 2008.

https://www.youtube.com/watch?v=8gy5tYVR-28

https://www.machinedesign.com/mechanical-motion-systems/article/21835788/changing-the-future-of-warehouses-with-amazon-robots

not our work

• Amazon fulfillment centers – sorting part

https://www.wired.com/story/amazon-warehouse-robots/

Automated Warehousing
not our work
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• InVia Robotics

Automated Warehousing

https://www.inviarobotics.com/app/uploads/2020/02/DASRS-11_0.jpg

not our work

Automated Warehousing

• Autostore

https://www.autostoresystem.com/cases/autostore-helps-parts-town-deliver-on-its-same-day-delivery-promise

not our work
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Automated Warehousing

• Vanderlande ADAPTO

https://www.youtube.com/watch?v=Szt20xNxB5M

https://www.directindustry.com/prod/vanderlande/product-5796-1580097.html

not our work

Manufacturing/Inspection

• B&R Automation ACOPOS 6D

https://www.br-automation.com/en/products/mechatronic-systems/acopos-6d/

not our work
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Multi-Agent Path Finding (MAPF)

• Assumptions
– Each agent moves N, E, S or W to an adjacent unblocked cell or waits, in unit time.
– Not allowed (“vertex collision”)
o Agent 1 moves from X to Y
o Agent 2 moves from Z to Y

– Not allowed (“edge collision”)
o Agent 1 moves from X to Y
o Agent 2 moves from Y to X

– Allowed

X Y

X Y Z

[1] R. Stern et al., “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks”, SoCS, 2019.

Multi-Agent Path Finding (MAPF)

• 800 robots (= 32% empty cells) on a 37x77 sorting-center map with 
50 workstations and 275 chutes (joint project with Amazon Robotics)

Single-Agent Planner Our MAPF Planner

[1] J. Li et al., “Lifelong Multi-Agent Path Finding in Large-Scale Warehouses”, AAAI, 2021. https://www.wired.com/story/amazon-warehouse-robots/

30

31



12/28/2021

8

Multi-Agent Path Finding (MAPF)

• 800 robots (= 32% empty cells) on a 37x77 sorting-center map with 
50 workstations and 275 chutes (joint project with Amazon Robotics)

[1] J. Li et al., “Lifelong Multi-Agent Path Finding in Large-Scale Warehouses”, AAAI, 2021.
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https://venturebeat.com/2020/05/18/amazons-ai-tool-can-plan-collision-free-paths-for-1000-warehouse-robots/

Amazon
needs

to be here

Main Talk

Achieving Practicality:
Efficiency
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Multi-Agent Path Finding (MAPF)

Optimal MAPF planners
(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded-suboptimal MAPF planners
(based on optimal MAPF planners)

Suboptimal MAPF planners
(greedy or based on traffic rules)
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https://www.pngegg.com/en/png-horua

Complexity of MAPF

• Optimal or bounded-suboptimal MAPF planning
– NP hard to find a makespan- or flow-time optimal MAPF 

plan [1], even on planar [2] or grid-like graphs [3]
– Polynomal time to find a makespan-optimal MAPF plan 

with anonymous agents [4]
– NP-hard to find a makespan-bounded-suboptimal MAPF 

plan with suboptimality factors of less than 4/3 [5]

[1] J. Yu and S. LaValle, “Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs”, AAAI, 2013.
[2] J. Yu, “Intractability of Optimal Multi-Robot Path Planning on Planar Graphs”, IEEE Robotics and Automation Letters, 2016.
[3] J. Banfi et al., “Intractability of Time-Optimal Multi-Robot Path Planning on 2D Grid Graphs with Holes”, IEEE Robotics and Automation L
[4] J. Yu and S. LaValle, “Multi-Agent Path Planning and Network Flow”, WAFR, 2012.
[5] H. Ma et al., “Multi-Agent Path Finding with Payload Transfers and the Package-Exchange Robot-Routing Problem”, AAAI, 2016.
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Multi-Agent Path Finding (MAPF)
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Optimal MAPF planners
(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded-suboptimal MAPF planners
(based on optimal MAPF planners)

Suboptimal MAPF planners
(greedy or based on traffic rules)

The memory consumption is also important and can be decreased with 
iterative deepening, which enables the application of incremental search

[1] E. Boyarski et al., “Iterative-Deepening Conflict-Based Search”, IJCAI 2020.

Conflict-Based Search (CBS)

• Conflict-based search (CBS) in the collision-resolution space

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding”, Artificial Intelligence 219, 2015.

not our work
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Conflict-Based Search (CBS)

• Conflict-based search (CBS) in the collision-resolution space

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding,” Artificial Intelligence 219, 2015.

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

not our work

Conflict-Based Search (CBS)

• Conflict-based search (CBS) in the collision-resolution space

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding,” Artificial Intelligence 219, 2015.

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

not our work
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Conflict-Based Search (CBS)

• Conflict-based search (CBS) in the collision-resolution space

[1] G. Sharon et al., “Conflict-Based Search for Optimal Multi-Agent Pathfinding,” Artificial Intelligence 219, 2015.

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

not our work

g = 10g = 10

g = 10

Multi-Agent Path Finding (MAPF)

• Runtime limit: 1 minute

[1] E. Boyarski et al., “ICBS: Improved Conflict-Based Search Algorithm for Multi-Agent Pathfinding”, IJCAI, 2015.

[1]
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• Conflict-based search (CBS) in the collision-resolution space

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4

A B C D E

1 S2

2 S1

3 G1

4 G2

[1] J. Li et al., “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding”, AAAI, 2019. 
[2] J. Li et al., “New Techniques for Pairwise Symmetry Breaking in Multi-Agent Path Finding”, ICAPS, 2020.
[3] J. Li et al., “Pairwise Symmetry Reasoning for Multi-Agent Path Finding Search”, Artificial Intelligence, 2021.

inspiration from 
constraint 

programming

g = 10g = 10

g = 10

CBS Improvement 3: Symmetry Breaking

• Conflict-based search (CBS) in the collision-resolution space
A B C D E

1 S2

2 S1

3 G1

4 G2

CBS Improvement 3: Symmetry Breaking

[1] J. Li et al., “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding”, AAAI, 2019. 
[2] J. Li et al., “New Techniques for Pairwise Symmetry Breaking in Multi-Agent Path Finding”, ICAPS, 2020.

inspiration from 
constraint 

programming
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• Conflict-based search (CBS) in the collision-resolution space
A B C D E

1 S2

2 S1

3 G1

4 G2

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4
or in cell D2 at time 3

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4
in cell C3 at time 3 
or in cell B2 at time 2

[1] J. Li et al., “Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding”, AAAI, 2019. 
[2] J. Li et al., “New Techniques for Pairwise Symmetry Breaking in Multi-Agent Path Finding”, ICAPS, 2020.

CBS Improvement 3: Symmetry Breaking
inspiration from 

constraint 
programming

g = 10g = 10

g = 10

• Number of node expansions

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

CBS Improvement 3: Symmetry Breaking
inspiration from 

constraint 
programming
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• Mutex propagation
A B C D E

1 S2

2 S1

3 G1

4 G2

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

inspiration from 
symbolic
planning

timestep 0

timestep 1

timestep 2

timestep 3

timestep 4

timestep 5

CBS Improvement 3: Symmetry Breaking

• Mutex propagation
A B C D E

1 S2

2 S1

3 G1

4 G2

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

timestep 0

timestep 1

timestep 2

timestep 3

timestep 4

timestep 5

CBS Improvement 3: Symmetry Breaking
inspiration from 

symbolic
planning
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• Mutex propagation
A B C D E

1 S2

2 S1

3 G1

4 G2

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

timestep 0

timestep 1

timestep 2

timestep 3

timestep 4

timestep 5

CBS Improvement 3: Symmetry Breaking
inspiration from 

symbolic
planning

• Mutex propagation
A B C D E

1 S2

2 S1

3 G1

4 G2

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

timestep 0

timestep 1

timestep 2

timestep 3

timestep 4

timestep 5

CBS Improvement 3: Symmetry Breaking
inspiration from 

symbolic
planning
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• Mutex propagation
A B C D E

1 S2

2 S1

3 G1

4 G2

Add constraint:
the red agent is not allowed

to be in cell D3 at time 4
or in cell D2 at time 3

Add constraint:
the blue agent is not allowed
to be in cell D3 at time 4
or in cell C3 at time 3 
or in cell B2 at time 2

[1] H. Zhang et al., “Multi-Agent Path Finding with Mutex Propagation”, ICAPS, 2020.

CBS Improvement 3: Symmetry Breaking
inspiration from 

symbolic
planning

g = 11g = 11

g = 11

Summary: Conflict-Based Search (CBS)

• Resolving collisions efficiently
– Symmetry breaking with designed or discovered constraints (optimal)
– Disjoint splitting (optimal)
– Priority-based search (suboptimal)

• Selecting nodes cleverly
– Heuristics (optimal)
– Explicit Estimation Search (bounded-suboptimal)

• Reducing the number of collisions in a node
– Highways (bounded-suboptimal)
– Rolling-horizon collision resolution (suboptimal)

• Other techniques
– Random restarts
– Large neighborhood search with designed or learned neighborhoods 66
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Conflict-Based Search (CBS)

• Runtime limit: 1 minute

[1] J. Li et al., “Pairwise Symmetry Reasoning for Multi-Agent Path Finding Search”, Artificial Intelligence, 2021.

[6][5]
[1]

Multi-Agent Path Finding (MAPF)
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Optimal MAPF planners
(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded-suboptimal MAPF planners
(based on optimal MAPF planners)

Suboptimal MAPF planners
(greedy or based on traffic rules)
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Conflict-Based Search (CBS)

• Runtime limit: 1 minute

• Not included: directional lanes to avoid head-to-head collisions

• Not included: rapid random restarts

w = 1.01

w = 1.02

Multi-Agent Path Finding (MAPF)
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Optimal MAPF planners
(based on search or reductions to MIP, SAT, or multi-commodity flow)

Bounded suboptimal MAPF planners
(based on optimal MAPF planners)

Suboptimal MAPF planners
(greedy or based on traffic rules)

74

88



12/28/2021

20

Conflict-Based Search (CBS)

• Runtime limit: 1 minute

• Priority-based search

• Large neighborhood search

• Not included: rolling-horizon collision resolution 
[1] J. Li et al., “RMAPF: Fast Repairing for Multi-Agent Path Finding via Large Neighborhood Search”, under review for AAAI, 2022.

1000 agents: ≪ 17% suboptimal
2000 agents: ≪ 28% suboptimal
2500 agents: ≪ 32% suboptimal

Algorithm Selection

• Jingyao Ren and Nora Ayanian (USC)

• Roni Stern et al. (Ben-Gurion University)

90
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Algorithm Selection

91

not our work

[1] O. Kaduri et al., “Experimental Evaluation of Classical Multi Agent Path Finding Algorithms”, SoCS, 2021.

Fastest Coverage

Algorithm Selection

92
[1] J. Ren et al., “MAPFAST: A Deep Algorithm Selector for Multi Agent Path Finding”, AAMAS, 2021.

not our work
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Main Talk

Achieving Practicality:
Robustness

CBS Extensions

• Agents of different kinodynamics

• Uncertainty about the speeds of agents

102
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• Application: loading docks

www.easternlifttruck.com

Linde CiTi Truck at Örebro University
courtesy of Marcello Cirillo

[1] M. Cirillo et al., “Integrated Motion Planning and Coordination for Industrial Vehicles”, ICAPS 2014.

Non-Holonomic Robots

Non-Holonomic Robots

[1] L. Cohen et al., “Optimal and Bounded-Suboptimal Multi-Agent Motion Planning”. SOCS 2019.
[2] M. Pivtoraiko et al., “Differentially Constrained Mobile Robot Motion Planning in State Lattices”, Journal of Field Robotics 26(3), 2009.

Non-Holonomic Robots
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Non-Holonomic Robots

• Discretized space (x,y)
• Planar graph
• Uniform edge traversal times
• Discretized time 

• Discretized space (x,y,orientation)
• Nonplanar graph
• Non-uniform edge traversal times
• Continuous time

Grid State Lattice

[1] L. Cohen et al., “Optimal and Bounded-Suboptimal Multi-Agent Motion Planning”. SOCS 2019.
[2] M. Pivtoraiko et al., “Differentially Constrained Mobile Robot Motion Planning in State Lattices”, Journal of Field Robotics 26(3), 2009.

Non-Holonomic Robots

[1] L. Cohen et al., “Optimal and Bounded-Suboptimal Multi-Agent Motion Planning”. SOCS 2019.
[2] M. Pivtoraiko et al., “Differentially Constrained Mobile Robot Motion Planning in State Lattices”, Journal of Field Robotics 26(3), 2009.
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Robust Plan Execution

• Mixed reality simulation
not our work

[1] W. Hoenig et al., “Mixed Reality for Robots”, IROS, 2015.

Main Talk

A Challenge for the Audience
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Machine Learning

• PRIMAL: mix of deep reinforcement learning and imitation learning

https://medium.com/free-code-camp/explained-simply-how-deepmind-taught-ai-to-play-video-games-9eb5f38c89ee https://www.pcworld.com/article/2889432/google-ai-program-masters-classic-atari-video-games.html

[1] V. Mnih et al., “Human Level Control through Deep Reinforcement Learning”, Nature 518, 2015.

not our work

Machine Learning

• PRIMAL: mix of deep reinforcement learning and imitation learning

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

Next action to execute

one agent (replicated for each agent)

135
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Machine Learning

• PRIMAL: mix of deep reinforcement learning and imitation learning

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

Machine Learning

• Training: 20 days in a supercomputing center 

• 64 agents – 20x20 environment – 10% obstacle density

MAPF planner PRIMAL (learning)
[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.
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Machine Learning

• Training: 20 days in a supercomputing center

• 64 agents – 20x20 environment – 20% obstacle density

[1] G. Sartoretti et al., “PRIMAL: Pathfinding via Reinforcement and Imitation Multi-Agent Learning,” IEEE RAL 4(3), 2019.

MAPF planner PRIMAL (learning)

Machine Learning

• NeurIPS 2020 Flatland Competition: 700 participants from 51 countries

MAPF planner
[1] J. Li et al., “Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge,” ICAPS, 2021.
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Machine Learning

• NeurIPS 2020 Flatland Competition: 700 participants from 51 countries

[1] J. Li et al., “Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge,” ICAPS, 2021.

Machine Learning

• NeurIPS 2020 Flatland Competition: 700 participants from 51 countries

[1] J. Li et al., “Scalable Rail Planning and Replanning: Winning the 2020 Flatland Challenge,” ICAPS, 2021.
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Machine Learning

• Enhancing planning with machine learning 
– Planners use lots of hard-coded decision strategies
– Machine learning can often learn to make better decisions
– The resulting planners can be more efficient and/or effective

[1] T. Huang et al., “Learning to Resolve Conflicts for Multi-Agent Path Finding with Conflict-Based Search,” AAAI, 2021.
[2] T. Huang et al., “Learning Node-Selection Strategies in Bounded-Suboptimal Conflict-Based Search for Multi-Agent Path Finding”, AAMAS, 2021.

inspiration from 
mixed integer
programming

Harvard TERMES Robots

Tree-based dynamic programming
[1] N. Petersen et al., “Termes: An Autonomous Robotic System for Three-Dimensional Collective Construction”, RSS, 2011
[2] S. Kumar et al., “A Tree-Based Algorithm for Construction Robots”, ICAPS, 2014.

https://www.mprnews.org/story/2016/04/06/npr-books-rocket-girls

https://ssr.seas.harvard.edu/termes
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Multi-Arm Assembly

[1] J. Chen et al., “Cooperative  Task  and  Motion  Planning for  Multi-Arm  Assembly  Systems”, under  review  for  IEEE Robotics and Automation Letters and ICRA, 2022.
.

Airport Surface Operation

https://www.kessler-axles.de/en/markets/aircraft-ground-support/aircraft-towing-tractors/

[1] J. Li et al., “Scheduling and Airport Taxiway Path Planning under Uncertainty”, AIAA, 2019.
[2] R. Morris et al., “Planning, Scheduling and Monitoring for Airport Surface Operations”, AAAI-16 Workshop, 2016.
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Pipe Routing

[1] G. Belov et al., “From Multi-Agent Pathfinding to 3D Pipe Routing”, SoCS, 2020.

x-y-t

x-y-z

Multi-Agent Path Finding (MAPF)

• H. Andreasson, D. Atzmon, N. Ayanian, R. Bartak, G. Belov, E. Boyarski, V. Bulitko, T. Cai, D. Chan, S.-
H. Chan, Z. Chen, H. Choset, M. Cirillo, L. Cohen, B. Dilkina, W. Du, J. Durham, A. Felner, G. Gange, 
M. Garcia de la Banda, M. Gong, M. Greco, D. Harabor, C. Hernandez, W. Hoenig, T. Huang, S. Jung, 
J. Kerr, S. Kiesel, S. Kumar, E. Lam, P. Le Bodic, J. Li, Z. Liang, M. Liu, W. Liu, Z. Liu, H. Ma, R. Morris, 
W. Paivine, C. Pasareanu, F. Pecora, W. Ruml, G. Sartoretti, G. Sharon, Y. Shi, D. Sigurdson, R. Stern, 
P. Stuckey, N. Sturtevant, K. Sun, P. Surynek, L. Terr, A. Tinka, Z. Tong, C. Tovey, T. Uras, G. Wagner, T. 
Walker, J. Wang, X. Wei, Y. Wu, H. Xu, M. Yao, W. Yeoh, L. Yi, D. Zhang, H. Zhang, Y. Zheng

• We thank NSF, Amazon Robotics, and NASA Ames for funding several of our projects discussed in 
this talk!
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Multi-Agent Path Finding (MAPF)
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