Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA

Author: Lars Kotthoff, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown

Problem: Increasing number of non-expert users trying to use machine learning tools. Wrong algorithm and parameter leads to results that are not ideal.

Existing Packages

- WEKA
- mlr

Input of these packages

- Learning algorithm
- Hyperparameters

-Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009) -Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., Jones, Z.M.: mlr: Machine Learning in R. Journal of Machine Learning Research 17(170), 1–5 (2016), http://jmlr.org/papers/v17/15-066.html

CASH Problem:

Combined Algorithm Selection and Hyperparameter Optimization -Given a dataset, automatically and simultaneously choosing a learning algorithm and setting its hyperparameters to optimize empirical performance

Challenge: -Response function noisy

-Space is high dimensional

CASH: single hierarchical hyperparameter optimization problem

Preliminaries

 $f : \mathcal{X} \mapsto \mathcal{Y}$ Y is either finite (classification) or continuous (regression) Training data set: $\{d_1, \dots, d_n\}$ $d_i = (\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}$

A learning algorithm A tries to map d_i to such a function

Most learning algorithms A further expose to hyperparameter $\lambda \in \Lambda$ Model Selection Problem $A^* \in \underset{A \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^k \mathcal{L}(A, \mathcal{D}_{\operatorname{train}}^{(i)}, \mathcal{D}_{\operatorname{valid}}^{(i)}),$ Hyperparameter Selection Problem $\lambda^* \in \underset{\lambda \in \Lambda}{\operatorname{argmin}} \frac{1}{k} \sum_{i=1}^k \mathcal{L}(A_\lambda, \mathcal{D}_{\operatorname{train}}^{(i)}, \mathcal{D}_{\operatorname{valid}}^{(i)}).$

CASH

Given a set of algorithms $\mathcal{A} = \{A^{(1)}, \ldots, A^{(k)}\}$ with associated hyperparameter spaces $\Lambda^{(1)}, \ldots, \Lambda^{(k)}$, we define the combined algorithm selection and hyperparameter optimization problem (CASH) as computing

$$A^*_{\lambda^*} \in \operatorname*{argmin}_{A^{(j)} \in \mathcal{A}, \lambda \in \Lambda^{(j)}} \frac{1}{k} \sum_{i=1}^k \mathcal{L}(A^{(j)}_{\lambda}, \mathcal{D}^{(i)}_{\text{train}}, \mathcal{D}^{(i)}_{\text{valid}}).$$
(4.1)

- Single combined hierarchical hyperparameter optimization question

$$\Lambda = \Lambda^{(1)} \cup \cdots \cup \Lambda^{(k)} \cup \{\lambda_r\}$$

Sequential Model-Based Optimization (SMBO)

Algorithm 1 SMBO

- 1: initialise model \mathcal{M}_L ; $\mathcal{H} \leftarrow \emptyset$
- 2: while time budget for optimization has not been exhausted do
- 3: $\lambda \leftarrow$ candidate configuration from \mathcal{M}_L
- 4: Compute $c = \mathcal{L}(A_{\lambda}, \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)})$
- 5: $\mathcal{H} \leftarrow \mathcal{H} \cup \{(\lambda, c)\}$
- 6: Update \mathcal{M}_L given \mathcal{H}
- 7: end while
- 8: **return** λ from \mathcal{H} with minimal *c*

Acquisition function: positive expected improvement $I_{c_{min}}(\lambda) := \max\{c_{min} - c(\lambda), 0\}$.

$$\mathbb{E}_{\mathcal{M}_{\mathcal{L}}}[I_{c_{min}}(\boldsymbol{\lambda})] = \int_{-\infty}^{c_{min}} \max\{c_{min} - c, 0\} \cdot p_{\mathcal{M}_{L}}(c \mid \boldsymbol{\lambda}) dc$$

Sequential model-based algorithm configuration (SMAC)

- Random Forest
- Obtain mean and variance

 $\mathbb{E}_{\mathcal{M}_{\mathcal{L}}}[I_{c_{min}}(\lambda)] = \sigma_{\lambda} \cdot [u \cdot \Phi(u) + \varphi(u)], \text{ where } u = \frac{c_{\min} - \mu_{\lambda}}{\sigma_{\lambda}}$

- Make progressively better estimates of this mean by evaluating these terms one at a time, thus trading off accuracy and computational cost
- In order for a new configuration to become a new incumbent, it must outperform the previous incumbent in every comparison made
- Implements a diversification mechanism to achieve robust performance even when its model is misled: every second configuration is selected at random

Auto-WEKA

- Focused on classification algorithms in WEKA
- Meta-Methods: 1 single base classifier and its parameters as input
- Ensemble methods: up to 5 learners
- Associated either a uniform or log uniform prior with each numerical parameter, depending on its semantics
- Auto-WEKA uses SMAC to solve CASH

Source code:

https://github.com/automl/autoweka

Base	Learners			
	BayesNet	2	NaiveBayes	2
	$DecisionStump^*$	0	NaiveBayesMultinomial	0
	$DecisionTable^*$	4	OneR	1
	GaussianProcesses*	10	PART	4
	IBk*	5	RandomForest	7
	J48	9	RandomTree*	11
	JRip	4	REPTree*	6
	KStar*	3	SGD*	5
	LinearRegression*	3	SimpleLinearRegression*	0
	LMT	9	SimpleLogistic	5
	Logistic	1	SMO	11
	M5P	4	SMOreg*	13
	M5Rules	4	VotedPerceptron	3
	MultilayerPerceptron*	8	ZeroR*	0
Ense	mble Methods			
	Stacking	2	Vote	2
Meta	a-Methods			
	LWL	5	Bagging	4
	AdaBoostM1	6		0
	AdditiveRegression	4	RandomCommittee	2
	AttributeSelectedClassifier	2	RandomSubSpace	3
Feat	ure Selection Methods		n maawaa waxaa sacco mar baxaa balada ahay 🗣 sha shagaa a	
	BestFirst	2	GreedyStepwise	4

Pase Leannan

Fig. 4.1 Learners and methods supported by Auto-WEKA, along with number of hyperparameters $|\Lambda|$. Every learner supports classification; starred learners also support regression

Datasets

- 15 sets from the UCI repository [13]
- the 'convex', 'MNIST basic' and 'rotated MNIST with background images' tasks used in [5];
- The appentency task from the KDD Cup '09
- two versions of the CIFAR-10 image classification task [21] (CIFAR-10-Small is a subset of CIFAR-10, where only the first 10,000 training data points are used rather than the full 50,000.)
- For datasets with a predefined training/test split, used that split. Otherwise, randomly split the dataset into 70% training and 30% test data.
- Each dataset: time budget of 30h
- Each method: 25 runs with different random seeds, then bootstrap sampling to repeatedly select 4 random runs and report the one with best cross-validation performance

Name	Num Discr.	Num Cont.	Num classes	Num training	Num test
Dexter	20,000	0	2	420	180
GermanCredit	13	7	2	700	300
Dorothea	100,000	0	2	805	345
Yeast	0	8	10	1,038	446
Amazon	10,000	0	49	1,050	450
Secom	0	591	2	1,096	471
Semeion	256	0	10	1,115	478
Car	6	0	4	1,209	519
Madelon	500	0	2	1,820	780
KR-vs-KP	37	0	2	2,237	959
Abalone	1	7	28	2,923	1,254
Wine Quality	0	11	11	3,425	1,469
Waveform	0	40	3	3,500	1,500
Gisette	5,000	0	2	4,900	2,100
Convex	0	784	2	8,000	50,000
CIFAR-10-Small	3,072	0	10	10,000	10,000
MNIST Basic	0	784	10	12,000	50,000
Rot. MNIST + BI	0	784	10	12,000	50,000
Shuttle	9	0	7	43,500	14,500
KDD09-Appentency	190	40	2	35,000	15,000
CIFAR-10	3,072	0	10	50,000	10,000

Table 4.1 Datasets used; Num. Discr. and Num. Cont. refer to the number of discrete and

Baseline Method

- Ex-Def: perform 10-fold cross validation on the training set for each technique with unmodified hyperparameters, and select the classifier with the smallest average misclassification error across folds
- **Grid Search**: performs an exhaustive search over a grid of hyperparameter settings for each of the base learners, discretizing numeric parameters into three points (Expensive, some datasets require more than 10,000 CPU hours)
- **Random Search**: picking algorithms and hyperparameters sampled at random, and computes their performance on the 10 cross-validation folds until it exhausts its time budget (750 CPU hours per dataset for cross-validation, then 120 CPU hours for sampling without replacement)

Table 4.2 Performance on both 10-fold cross-validation and test data. Ex-Def and Grid Search are deterministic. Random search had a time budget of 120 CPU hours. For Auto-WEKA, we performed 25 runs of 30 h each. We report results as mean loss across 100,000 bootstrap samples simulating 4 parallel runs. We determined test loss (misclassification rate) by training the selected model/hyperparameters on the entire 70% training data and computing accuracy on the previously unused 30% test data. Bold face indicates the lowest error within a block of comparable methods that was statistically significant

	Oracle Perf. (%)				10-Fold C.V. performance (%)				Test performance (%)			
	Ex-Def		Grid search									
Dataset	Best	Worst	Best	Worst	Ex-Def	Grid search	Rand. search	Auto-WEKA	Ex-Def	Grid search	Rand. search	Auto-WEKA
Dexter	7.78	52.78	3.89	63.33	10.20	5.07	10.60	5.66	8.89	5.00	9.18	7.49
GermanCredit	26.00	38.00	25.00	68.00	22.45	20.20	20.15	17.87	27.33	26.67	29.03	28.24
Dorothea	4.93	99.24	4.64	99.24	6.03	6.73	8.11	5.62	6.96	5.80	5.22	6.21
Yeast	40.00	68.99	36.85	69.89	39.43	39.71	38.74	35.51	40.45	42.47	43.15	40.67
Amazon	28.44	99.33	17.56	99.33	43.94	36.88	59.85	47.34	28.44	20.00	41.11	33.99
Secom	7.87	14.26	7.66	92.13	6.25	6.12	5.24	5.24	8.09	8.09	8.03	8.01
Semeion	8.18	92.45	5.24	92.45	6.52	4.86	6.06	4.78	8.18	6.29	6.10	5.08
Car	0.77	29.15	0.00	46.14	2.71	0.83	0.53	0.61	0.77	0.97	0.01	0.40
Madelon	17.05	50.26	17.05	62.69	25.98	26.46	27.95	20.70	21.38	21.15	24.29	21.12
KR-vs-KP	0.31	48.96	0.21	51.04	0.89	0.64	0.63	0.30	0.31	1.15	0.58	0.31
Abalone	73.18	84.04	72.15	92.90	73.33	72.15	72.03	71.71	73.18	73.42	74.88	73.51
Wine Quality	36.35	60.99	32.88	99.39	38.94	35.23	35.36	34.65	37.51	34.06	34.41	33.95
Waveform	14.27	68.80	13.47	68.80	12.73	12.45	12.43	11.92	14.40	14.66	14.27	14.42
Gisette	2.52	50.91	1.81	51.23	3.62	2.59	4.84	2.43	2.81	2,40	4.62	2.24
Convex	25.96	50.00	19.94	71.49	28.68	22.36	33.31	25.93	25.96	23.45	31.20	23.17
CIFAR-10-Small	65.91	90.00	52.16	90.36	66.59	53.64	67.33	58.84	65.91	56.94	66.12	56.87
MNIST Basic	5.19	88.75	2.58	88.75	5.12	2.51	5.05	3.75	5.19	2.64	5.05	3.64
Rot. MNIST + BI	63.14	88.88	55.34	93.01	66.15	56.01	68.62	57.86	63.14	57.59	66.40	57.04
Shuttle	0.0138	20.8414	0.0069	89.8207	0.0328	0.0361	0.0345	0.0224	0.0138	0.0414	0.0157	0.0130
KDD09-Appentency	1.7400	6.9733	1.6332	54.2400	1.8776	1.8735	1.7510	1.7038	1.7405	1.7400	1.7400	1.7358
CIFAR-10	64.27	90.00	55.27	90.00	65.54	54.04	69.46	62.36	64.27	63.13	69.72	61.15

Result

- Auto-WEKA outperforms baseline methods 15/21
- Grid search and random search better than Ex-Def
- Auto-WEKA good on large datasets 12/13
 - Risk of overfitting decreases with large datasets
- Substantial improvements, relative reduction of test misclassification rate exceeding 16% in 3/21 cases